Package: LPS 1.0.17

LPS: Linear Predictor Score, for Binary Inference from Multiple Continuous Variables

An implementation of the Linear Predictor Score approach, as initiated by Radmacher et al. (J Comput Biol 2001) and enhanced by Wright et al. (PNAS 2003) for gene expression signatures. Several tools for unsupervised clustering of gene expression data are also provided.

Authors:Sylvain Mareschal

LPS_1.0.17.tar.gz
LPS_1.0.17.zip(r-4.5)LPS_1.0.17.zip(r-4.4)LPS_1.0.17.zip(r-4.3)
LPS_1.0.17.tgz(r-4.4-any)LPS_1.0.17.tgz(r-4.3-any)
LPS_1.0.17.tar.gz(r-4.5-noble)LPS_1.0.17.tar.gz(r-4.4-noble)
LPS_1.0.17.tgz(r-4.4-emscripten)LPS_1.0.17.tgz(r-4.3-emscripten)
LPS.pdf |LPS.html
LPS/json (API)
NEWS

# Install 'LPS' in R:
install.packages('LPS', repos = c('https://maressyl.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/maressyl/r.lps/issues

Datasets:

On CRAN:

3.74 score 1 stars 11 scripts 188 downloads 48 mentions 13 exports 0 dependencies

Last updated 3 years agofrom:8be4099d8e. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 01 2024
R-4.5-winNOTENov 01 2024
R-4.5-linuxNOTENov 01 2024
R-4.4-winOKNov 01 2024
R-4.4-macOKNov 01 2024
R-4.3-winOKNov 01 2024
R-4.3-macOKNov 01 2024

Exports:clusterizedist.CORhclust.wardheatheat.expheat.linheat.mapheat.scaleLPSLPS.coeffOVLsurv.colorssurv.scale

Dependencies: